Hybrid scatter correction for CT imaging.
نویسندگان
چکیده
The purpose of this study was to develop and evaluate the hybrid scatter correction algorithm (HSC) for CT imaging. Therefore, two established ways to perform scatter correction, i.e. physical scatter correction based on Monte Carlo simulations and a convolution-based scatter correction algorithm, were combined in order to perform an object-dependent, fast and accurate scatter correction. Based on a reconstructed CT volume, patient-specific scatter intensity is estimated by a coarse Monte Carlo simulation that uses a reduced amount of simulated photons in order to reduce the simulation time. To further speed up the Monte Carlo scatter estimation, scatter intensities are simulated only for a fraction of all projections. In a second step, the high noise estimate of the scatter intensity is used to calibrate the open parameters in a convolution-based algorithm which is then used to correct measured intensities for scatter. Furthermore, the scatter-corrected intensities are used in order to reconstruct a scatter-corrected CT volume data set. To evaluate the scatter reduction potential of HSC, we conducted simulations in a clinical CT geometry and measurements with a flat detector CT system. In the simulation study, HSC-corrected images were compared to scatter-free reference images. For the measurements, no scatter-free reference image was available. Therefore, we used an image corrected with a low-noise Monte Carlo simulation as a reference. The results show that the HSC can significantly reduce scatter artifacts. Compared to the reference images, the error due to scatter artifacts decreased from 100% for uncorrected images to a value below 20% for HSC-corrected images for both the clinical (simulated data) and the flat detector CT geometry (measurement). Compared to a low-noise Monte Carlo simulation, with the HSC the number of photon histories can be reduced by about a factor of 100 per projection without losing correction accuracy. Furthermore, it was sufficient to calibrate the parameters in the convolution model at an angular increment of about 20°. The reduction of the simulated photon histories together with the reduced amount of simulated Monte Carlo scatter projections decreased the total runtime of the scatter correction by about two orders of magnitude for the cases investigated here when using the HSC instead of a low-noise Monte Carlo simulation for scatter correction.
منابع مشابه
Computed tomography based attenuation correction in PET/CT: Principles, instrumentation, protocols, artifacts and future trends
The advent of dual-modality PET/CT imaging has revolutionized the practice of clinical oncology, cardiology and neurology by improving lesions localization and the possibility of accurate quantitative analysis. In addition, the use of CT images for CT-based attenuation correction (CTAC) allows to decrease the overall scanning time and to create a noise-free attenuat...
متن کاملQuantitative SPECT and planar 32P bremsstrahlung imaging for dosimetry purpose –An experimental phantom study
Background: In this study, Quantitative 32P bremsstrahlung planar and SPECT imaging and consequent dose assessment were carried out as a comprehensive phantom study to define an appropriate method for accurate Dosimetry in clinical practice. Materials and Methods: CT, planar and SPECT bremsstrahlung images of Jaszczak phantom containing a known activity of 32P were acquired. In addition, Phanto...
متن کاملSimulation and patient studies of scatter correction in cardiac SPECT imaging
Introduction: Myocardial perfusion imaging is a nuclear medicine imaging method that is used to detect coronary artery diseases. One of the main sources of error in this imaging method is the detection of Compton scattered photons in the photopeak energy window used for data acquisition. This results in the degradation of the image contrast, and therefore decreases the...
متن کاملCalculation of the Scattered Radiation Profile in 64 Slice CT Scanners Using Experimental Measurement
Introduction: One of the most important parameters in x-ray CT imaging is the noise induced by detected scattered radiation. The detected scattered radiation is completely dependent on the scanner geometry as well as size, shape and material of the scanned object. The magnitude and spatial distribution of the scattered radiation in x-ray CT should be quantified for development of robust scatter...
متن کاملThe Effect of FEW Scatter Correction Method in In-111 Imaging
Introduction: In nuclear medicine imaging, detection of the scattered photons along with the primary photons is one of the major problems that can lead to a decrease in ddiagnostic accuracy. Therefore, use of a suitable scatter correction method can help to improve of the image quality and increase of diagnostic accuracy. The aim of this study is evaluation of five energy wind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 57 21 شماره
صفحات -
تاریخ انتشار 2012